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INTRODUCTION

In Indonesia, climate variability can be influ-
enced by the El Nino and La Nina phenomena, 
collectively referred to as the El Nino-southern os-
cillation (ENSO) (Nur’utami & Hidayat, 2016). El 
Nino is characterised by an increase in the equato-
rial temperatures of the central and eastern Pacific, 
while La Nina is characterised by a cooling of sea 
surface temperatures in the same region (Damette 

et al., 2024). The impact of these two phenomena is 
globally widespread and affects rainfall patterns and 
air temperatures in countries around the world (San-
toso et al., 2017). ENSO has been widely recognised 
as a major factor in the unpredictability of seasonal 
patterns, as it can cause extreme rainfall during La 
Nina and prolonged drought during El Nino (Arja-
sakusuma et al., 2018; Kurniadi et al., 2021). Uncer-
tainty in seasonal patterns due to ENSO can disrupt 
ecosystem stability (Wang et al., 2020). 
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The Meteorology, Climatology and Geophys-
ics Agency reports that from July to September 
2022, under the influence of La Nina, rainfall in 
Indonesia will be higher than the 30-year long-
term average, with an earlier start of the rainy 
season, especially in Java, Sulawesi, Kalimantan, 
Maluku, Papua and southern Sumatra (BMKG, 
2022). The following year, from July to Septem-
ber in 2023 under the influence of El Nino, Indo-
nesia experienced drier than normal conditions, 
with rainfall falling 30% below normal, espe-
cially in Java, Bali, Nusa Tenggara, and Sulawesi 
(BMKG, 2023). Based on this, Gowa Regency, 
which is located in South Sulawesi, is certainly 
inseparable from these two ENSO phases which 
can affect climate variability in this region. Along 
with the increasing frequency and intensity of the 
ENSO phenomenon due to global climate change 
(Mishra et al., 2022). A deeper understanding of 
how La Nina and El Nino affect climate variabil-
ity differently in a region, especially at the local 
level, is crucial to anticipate their future impacts

One aspect that can reflect the influence of 
ENSO on climate variability is the response given 
by the ecosystem. One component of the ecosys-
tem that has a high sensitivity to climate variability 
is vegetation (Bao et al., 2021). In addition, infor-
mation on how vegetation growth is affected by 
climate variability is still needed (Le, 2023), be-
cause it has not been discussed comprehensively, 
especially based on spatial and temporal distribu-
tion (Sun et al., 2022). Remote sensing technology 
enables spatial and temporal analyses that cannot 
be done with conventional methods, providing 
accurate data on vegetation variability (Xu et al., 
2024). The normalised difference vegetation index 
(NDVI) method is one approach in remote sensing 
that is widely used to monitor vegetation dynam-
ics (Li et al., 2024). NDVI is very useful in under-
standing vegetation dynamics, such as monitoring 
plant health and productivity spatially and tem-
porally (Zhihao & Fang, 2024). Therefore, NDVI 
analysis can be used to observe how vegetation 
dynamics respond to climate variability during La 
Nina and El Nino phases in Gowa Regency Sev-
eral previous studies have looked at how ENSO af-
fects climate variability in different regions (Zhu et 
al., 2021; Sarvina, 2023; Stuecker, 2023). Howev-
er, there are still limitations in understanding how 
ENSO, especially in the La Nina phase in 2022 
and El Nino in 2023, affects climate variability dif-
ferently at the local level such as Gowa Regency, 
by looking at vegetation dynamics through NDVI. 

This is supported by Wiel & Bintanja (2021) in his 
research concluded that in many regions, climate 
variability is still not well understood in a com-
prehensive manner. Therefore, this research can 
contribute to the gap. Understanding how ENSO 
affects climate variability at the local level is im-
portant because it can affect rainfall patterns and 
air temperature, which can have implications for 
ecosystem instability. Therefore, this study aims to 
analyse NDVI-based vegetation dynamics that can 
be an indicator of differences in climate variabil-
ity during La Nina and El Nino phases in Gowa 
Regency. The results of this study are expected to 
provide empirical evidence of how the influence 
of ENSO, especially La Nina and El Nino, affects 
climate variability in Gowa Regency differently, so 
that it can be used as a basis for formulating miti-
gation and adaptation strategies in the future.

MATERIAL AND METHODS

Research area

Gowa Regency is one of the Indonesian regions 
affected by the ENSO climate phenomenon, name-
ly La Nina in 2022 and El Nino in 2023 based on 
information released by BMKG. As shown in Fig-
ure 1. as part of Gowa Regency, Manuju and Paran-
gloe sub-districts which are the focus areas of the 
research are located at the coordinates of 5°20’45” 
LS, 119°43’06” BT dan 5°18’12” LS, 119°47’48” 
BT. Gowa Regency consists of 18 subdistricts. 
However, this research has limitations in the scope 
of the study area that need to be considered. This re-
search only covers two subdistricts, namely Manu-
ju and Parangloe. This is based on two main rea-
sons. Firstly, the Sentinel-2A satellite imagery used 
for this study, during the La Nina phase in 2022 
(July-September) and the El Nino phase in 2023 
(July-September), showed that most sub-districts in 
Gowa Regency were cloud-covered, making it im-
possible to accurately and consistently conduct spa-
tial and temporal analyses of NDVI across all sub-
districts. Secondly, most of the other sub-districts 
are dominated by two types of land cover, namely 
settlements and agricultural land, which limits the 
overall analysis of vegetation dynamics.

Manuju and Parangloe sub-districts were cho-
sen because during the observation period, they 
were not covered by clouds as seen in the satellite 
images analysed. In addition, these two areas are 
dominated by various types of vegetation, so that 
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the analysis carried out is more in line with the 
research objectives. The various types of vegeta-
tion that dominate in the two sub-districts include 
forests, shrubs and grasses, and agricultural land. 
This makes the two sub-districts a representative 
model for understanding patterns of vegetation 
dynamics that are relevant to the ecosystem as a 
whole in Gowa Regency. Although this study was 
limited to two sub-districts, the results obtained 
are still relevant to understanding vegetation dy-
namics as an indicator of differences in climate 
variability in Gowa Regency during the La Nina 
and El Nino phases.

Data source 

Satellite imagery

The metadata information of the downloaded 
satellite images can be seen in Table 1. This table 
contains information about all the images anal-
ysed in this study. Based on the results of research 
conducted by Sandera & Stych (2020) found that 
Sentinel-2 satellite imagery has the best resolution, 
both spatially and temporally in monitoring changes 
in various types of vegetation. The higher resolu-
tion of a satellite image will provide more detailed 
analysis results (Galar et al., 2019). 

Figure 1. Research area Manuju and Parangloe sub-districts Gowa Regency

Table 1. Sentinel-2 L2A characteristic features of satellite data
Name Level Date Band Resolution

T50MQV_20220728T022341_B04 2A 28/07/2022 4 (Red) 10 meters

T50MQV_20220822T022341_B04 2A 22/08/2022 4 (Red) 10 meters

T50MQV_20220911T022341_B04 2A 11/09/2022 4 (Red) 10 meters

T50MQV_20230728T022331_B04 2A 28/07/2023 4 (Red) 10 meters

T50MQV_20230827T022331_B04 2A 27/08/2023 4 (Red) 10 meters

T50MQV_20230911T022331_B04 2A 26/09/2023 4 (Red) 10 meters

T50MQV_20220728T022341_B08 2A 28/07/2022 8 (NIR) 10 meters

T50MQV_20220822T022341_B08 2A 22/08/2022 8 (NIR) 10 meters

T50MQV_20220911T022341_B08 2A 11/09/2022 8 (NIR) 10 meters

T50MQV_20230728T022331_B08 2A 28/07/2023 8 (NIR) 10 meters

T50MQV_20230827T022331_B08 2A 27/08/2023 8 (NIR) 10 meters

T50MQV_20230926T022331_B08 2A 26/09/2023 8 (NIR) 10 meters
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Vegetation type land cover

Land cover vegetation type data used in this 
study was obtained from Esri Land Cover. ESRI 
land cover provides remote sensing-based data 
with global resolution that is updated annually. 
This data is used as a reference which is then 
corrected to map land cover conditions in the re-
search area, namely Manuju District and Paran-
gloe District, Gowa Regency. In this study, there 
are three types of vegetation observed, namely 
tree vegetation, shrub and rumuput vegetation 
and agricultural land vegetation to see their re-
spective responses to climate variability. 

ENSO conditions (La Nina phase in 2022   
and El Nino phase in 2023)

Multivariate ENSO index (MEI) is used to pro-
vide information related to ENSO events, especially 
La Nina and El Nino, which can affect climate vari-
ability. Based on Figure 2, it can be seen that in 2022 
in July-September there were La Nina conditions, 
while in 2023 in July-September there were El Nino 
conditions. The value for each month is obtained 
directly from the data provided by NOAA without 
going through any calculation process.

The MEI is a method used to measure the in-
tensity of the ENSO. The MEI is considered the 
most comprehensive index for monitoring ENSO 
as it incorporates the analysis of six different me-
teorological parameters measured in the tropical 
Pacific (Mazzarella et al., 2010). 

Climate parameters 

In this study, two climate parameters are 
used as a reference because they are related 
to ENSO conditions, namely rainfall and air 
temperature (Chueasa et al., 2024; Kemarau 
& Eboy, 2021). The average rainfall and air 
temperature can be seen in Table 2. The cli-
mate parameter data used in this study were 
obtained from the Meteorology, Climatology 
and Geophysics Agency (BMKG) through an 
official request mechanism in accordance with 
applicable institutional procedures. This data 
is not available for public access through the 
BMKG website due to regulations regarding 
the distribution of official data to ensure valid-
ity and governance in accordance with national 
policies. Requests for data are made through 
academic institutions by completing an official 
form, a letter of request explaining the purpose 
of using the data, and approval from relevant 
parties at BMKG. This process aims to ensure 
the transparency, accuracy and credibility of 
the data used in this study.

These two parameters serve as key indi-
cators of climate variability. The information 
on both graphs is used to describe the climate 
variability in July-September 2022 during the 
La Nina phase and the same months in 2023 
during the El Nino phase. Data on these two 
parameters provide a snapshot of how ENSO-
driven climate variability materialises in the 
research area (Fig. 3 and 4).

Figure 2. Graph value the multivariate ENSO index. National Oceanic and Atmospheric Administration 
(NOAA) (https://psl.noaa.gov/enso/mei/#data)

Table 2. Climate parameters 

Climate parameters
La Nina phase 2022 El Nino phase 2023

July August September July August September

Average rainfall (mm) 59 63 59 94 0 0

Average air temperature (°C) 26.9 26.9 27.2 26.8 27.1 28.3

Note: Meteorology, climatology and geophysics agency (BMKG) 
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Processing

In this research, the NDVI analysis was con-
ducted using ArcGIS 10.8 software by utilising 
Sentinel-2 satellite imagery. The processing stage 
begins with the collection of Sentinel-2 imagery 
from official data sources in accordance with the 
observed period. Next, pre-processing was per-
formed, such as cropping the area according to 
the boundaries of the study area. After that, the 
reflectance values of the relevant spectral chan-
nels were extracted to produce NDVI maps. This 
process was carried out in ArcGIS 10.8 using 
the Raster Calculator feature to process the pixel 
values of the corrected image. The results of the 
calculation were then visualised in the form of 
thematic maps showing the variation of NDVI 
values. After that, an analysis was carried out to 
see the changes in area based on the NDVI clas-
sification during the observed period.

NDVI calculation

NDVI is the most commonly used vegetation 
index to describe the greenness of vegetation as 
it is sensitive to chlorophyll abundance and pho-
tosynthetically active leaves (Martinez & Labib, 
2023). The NDVI formula is calculated using the 
following formula: 

 NDVI = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁𝑅𝑅𝑅𝑅 (1) 

NDVI = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 8−𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 4
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 8+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 4 (2) 

Regression 1: X₁ = β₀ + β₁X₂ + ε   Regression 2: X₂ = β₀ + β₁X₁ + ε (3) 
VIFi = 1

1 −𝑁𝑁𝑖𝑖
2  (4) 

Ŷ = β₀ + β₁X1 + β₂X2 (5) 
𝑅𝑅2 = 1 −  𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 (6) 

𝑅𝑅2
𝐵𝐵𝐵𝐵𝑎𝑎 = 1 − ((1− 𝑁𝑁2)(n−1 )

n − k − 1 ) (7) 

𝐹𝐹 = MSR
MSE =  (𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟/𝑘𝑘)

(𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟/(𝐵𝐵 − 𝑘𝑘 1 )) (8) 
Ŷ = 97698.37 + 30.63 Rainfall -2686.92 Air temperature (9) 

 

 (1)

where: NIR represents the Nir Infrared band and 
RED represents the Red band (Mehmood 
et al., 2024). On Sentinel-2A, it is calcu-
lated with the following formula:
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 (6) 

𝑅𝑅2
𝐵𝐵𝐵𝐵𝑎𝑎 = 1 − ((1− 𝑁𝑁2)(n−1 )

n − k − 1 ) (7) 

𝐹𝐹 = MSR
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(𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟/(𝐵𝐵 − 𝑘𝑘 1 )) (8) 
Ŷ = 97698.37 + 30.63 Rainfall -2686.92 Air temperature (9) 

 

 (2)

NDVI classification

In NDVI analysis, the vegetation index den-
sity can be seen from a range of values -1 to +1, 
which in general larger index values indicate bet-
ter health and density than smaller values, and 
can be used as primary data because it has a posi-
tive correlation with field conditions (Akbar et 
al., 2020). The NDVI value classification range 
can be seen in Table 3. 

The NDVI classification in this study was ad-
justed based on the analysis of Sentinel-2 imag-
ery in the study area. The steps taken were:
a) Review of NDVI classification, previous stud-

ies (Amanollahi et al., 2012; Atun et al., 2020; 
Aquino et al., 2018; Aziz et al., 2018; Bid, 
2016) compared to see how the NDVI classifi-
cation boundaries differed.

b) NDVI value extraction, NDVI values were 

Figure 3. Average rainfall chart

Figure 4. Average air temperature chart
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collected from reference sites using supervised 
classification in ArcGIS 10.8.

c) Cut-off values adjustment, the distribution of 
NDVI values was analysed to determine clas-
sification limits that better suit the conditions 
of the study area.

d) The final classification, based on the analysis, 
established five main categories: water body 
(NDVI ≤ 0); No vegetation (0 < NDVI ≤ 0.2); 
Low vegetation index (0.2 < NDVI ≤ 0.3); 
Medium vegetation index (0.3 < NDVI ≤ 0.5); 
High vegetation index (0.5 < NDVI ≤ 1). This 
adjustment ensures that the NDVI classifica-
tion used more accurately represents the veg-
etation condition in the study area.

Data analysis technique

Multicollinearity test 

This study conducted a multicollinearity test 
whose function is to identify linear relationships 
between independent variables (Shrestha, 2020). 
This test is carried out by looking at the variance 
inflation factor (VIF) value, with the VIF value 
criterion <5 (Akinwande et al., 2015). Multicol-
linearitytestwas performed by calculating the 
variance inflation factor (VIF) for the rainfall 
(X₁) and air temperature (X₂) variables. VIF is 
calculated based on the coefficient of determi-
nation (R²) of regression between independent 
variables, with the model:
 Regression 1: X₁ = β₀ + β₁X₂ + ε  

 Regression 2: X₂ = β₀ + β₁X₁ + ε  (3)

where: X1 – rainfall, X2 – air temperature, β₀ – the 
intercept, β₁ – regression coefficient, ε – er-
ror term

After obtaining R² from each regression, the 
VIF value is calculated using the formula:
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 (6) 
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 – coefficient of determination from 
regression of variable i on other variables

The average values of rainfall and air tem-
perature for each month are presented in Table 4.

Multiple linear regression analysis

A regression model that involves one de-
pendent variable and more than one indepen-
dent variable is called multiple linear regression 
(Uyanık & Guler, 2013). This analysis makes it 
possible to measure the extent to which each in-
dependent variable (rainfall and air temperature) 
affects the dependent variable (vegetation area at 
NDVI). The multiple linear regression model in 
this study is as follows:
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 (5)

where: Ŷ – vegetation area, β₀ – the intercept of 
the line on the Ŷ axis, β₁, β₂ – coefficient 
of multiple lines regression, X1 – rainfall, 
X2 – air temperature

Table 3. NDVI value classification range
Class Classification NDVI range

1 Water body NDVI ≤ 0

2 No vegetation 0 < NDVI ≤  0.2

3 Low vegetation index 0.2 < NDVI ≤ 0.3

4 Moderate vegetation index 0.3 < NDVI ≤ 0.5

5 High vegetation index 0.5 < NDVI ≤ 1

Table 4. Average rainfall and air temperature values
Years Month Rainfall (mm) Air temperature (°C)

2022 July 59 26.9

2022 August 63 26.9

2022 September 59 27.2

2023 July 94 26.8

2023 August 0 27.1

2023 September 0 28.3
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Furthermore, calculations of R², Adjusted R², 
and F-Statistics were used to evaluate the qual-
ity of the multiple linear regression model in 
explaining the relationship between rainfall and 
air temperature on vegetation. The coefficient of 
determination (R²) indicates the extent to which 
rainfall and air temperature can explain variations 
in vegetation. The R² value is calculated using the 
following formula:
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where: SSres – sum of squares residual, SStotal – 
sum of squares total 

R² values range from 0 to 1, where values 
close to 1 indicate that the regression model is 
very good at explaining variations in the data. 
Because the number of independent variables in 
the model can affect the R² value, Adjusted R² is 
used to adjust for the influence of the number of 
variables. The calculation is:
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where: n – number of observations (amount of 
data), k – number of independent vari-
ables in the model.

Adjusted R² is more accurate in evaluating 
regression models, especially if the number of in-
dependent variables increases. To assess the sig-
nificance of the overall model, the F-Statistic test 
is used, which is calculated by the formula:
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 (8)

where: SSreg – sum of squares regression, SSres 
– sum of squares residual, MSR – mean 
square regression, MSE – mean square 
error, n – jumlah observasi, k – jumlah 
variabel independen.

F statistics to determine whether the indepen-
dent variables in simultas (overall) are significant 
to the dependent variable (Sureiman & Mangera, 
2020). In this test Fhitung (Sig) is compared with Ft-
abel at the 95% confidence level or α = 5% with the 
following conditions if sig < 0.05 then H0 is rejected 
(real). If sig > 0.5 then H0 is accepted (not real).

RESULTS AND DISCUSSION

NDVI-based vegetation dynamics as an 
indicator of differences in climate variability 
during La Nina and El Nino in Gowa district

Based on the results of the NDVI analysis 
that has been carried out, it can be seen in Figures 
5, 6, and 7 are maps that show the dynamics of 
vegetation in the La Nina period in 2022 in July-
September, while Figures 8, 9, and 10 show the 
dynamics of vegetation in the El Nino period in 
2023 in the same month. This analysis was con-
ducted to identify differences in the spatial pattern 
of NDVI, which is divided into 5 classifications. 
Each classification is represented with a different 
colour as shown on the map, so that visually there 
can be clearly observed differences in vegetation 
dynamics based on NDVI between the La Nina 

Figure 5. NDVI in July 2022 during La Nina phase
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Figure 6. NDVI in August 2022 during La Nina phase

Figure 7. NDVI in September 2022 during La Nina phase

Figure 8. NDVI in July 2023 during El Nino phase
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phase in 2022 and the El Nino phase in 2023, 
which can provide an initial picture of the differ-
ences in climate variability in the two phases.

The results of the NDVI map analysis were 
further analysed in ArcGis 10.8 software to 
quantitatively determine the extent of each of the 
five NDVI classifications in each period. Table 5 
shows the results of the analyses that have been 
carried out as well as the visualisation can be 
seen in Figure 5 to Figure 10 which provides an 
overview of vegetation dynamics. To facilitate 
interpretation of the changing trends, the results 
of this analysis are also visualised in graphical 
form in Figure 11. 

The vegetation dynamics described from the 
analysis results are interpreted based on ENSO 

conditions, especially the La Nina phase in 2022 
and EL Nino in 2023 confirmed through the MEI 
in Figure 2, as well as climate variability based 
on two climatic parameters, namely rainfall and 
air temperature whose data are obtained from 
BMKG. Indonesia has a recurring annual season-
al pattern cycle, namely the rainy and dry seasons, 
meaning that the same month in different years 
has the same climate variability. Climate param-
eters, especially rainfall and air temperature in 
Table 3 show that climate variability in the La 
Nina phase in 2022 is different from climate vari-
ability in the El Nino phase in 2023, even though 
the months compared are the same, namely July, 
August and September. The results of spatial and 

Figure 9. NDVI in August 2023 during El Nino phase

Figure 10. NDVI in September 2023 during El Nino phase



358

Ecological Engineering & Environmental Technology 2025, 26(5), 349–365

temporal analyses of vegetation dynamics based 
on NDVI can provide empirical evidence of this.

Climate variability during the La Nina phase 
in 2022 in July, August, and September, can be 
seen in Table 3, which shows that the average 
rainfall was 59 mm, 63 mm, and 59 mm, while 
the average air temperature was 26.9°, 26.9°, and 
27.2°. Based on Figures 5, 6, and 7, which show 
the spatial and temporal dynamics of vegetation 
in this period, stable rainfall and air temperature 
are able to support vegetation productivity, as evi-
denced by the dominance of areas with high and 
medium vegetation indices. However, areas with 
low vegetation index and no vegetation slightly 
increased from July to September, possibly due 
to the seasonal transition from the rainy season 
to the dry season in accordance with Indonesian 
seasonal patterns. In addition, the pattern of the 
community’s planting season, which is closely 
related to the growth phase of plants on agri-
cultural land, is also the cause. In their research 
Adinda et al. (2020) stated that the phase of plant 
growth on agricultural land can affect the results 
of NDVI analysis.

In contrast, the climatic variability in the El 
Nino phase of 2023 in the same month can also 
be seen in Table 3, which shows that the average 
rainfall was 94 mm, 0 mm, and 0 mm, respec-
tively, while the average air temperature was 
26.8°, 27.1°, and 28.3°, respectively. Based on 

Figures 8, 9, and 10, which show the spatial and 
temporal vegetation dynamics of the period, the 
very low rainfall and high air temperature, espe-
cially in August-September, caused a significant 
decrease in areas with a high vegetation index, 
as well as an increase in areas with a low veg-
etation index and areas without vegetation, in-
dicating vegetation degradation. This shows the 
sensitivity of vegetation to extreme climate vari-
ability during the El Nino phase, where vegeta-
tion that depends on water availability and sta-
ble air temperature becomes vulnerable to rapid 
changes in environmental conditions. This is 
because significant soil moisture loss can inhibit 
photosynthesis (Didion‐Gency et al., 2022).

ENSO dynamics on climate variability also 
have an impact on the water body of the Bili-Bili 
reservoir in the study area. During the La Nina 
phase, the water body area of Bili-Bili reservoir 
appeared to be stable, while during the El Nino 
phase, the water body area decreased drastically 
by about 59% from July to September due to in-
creased evaporation and lack of rainfall which 
also confirmed the strong relationship between 
ENSO and water availability. Overall, the find-
ings confirm that the ENSO phenomenon, which 
includes La Nina and El Nino, contributes to cli-
mate variability specifically in Gowa Regency, 
which is reflected by the vegetation dynamics 
based on NDVI. 

Figure 11. Distribution of vegetation area based on NDVI

Table 5. Change rate of vegetation area based on NDVI classification

NDVI Classification
La Nina 2022 (ha) El Nino 2023 (ha)

July August September July August September

Water body 1.592 1.488 1.437 1.197 921 546

No vegetation 1.795 2.301 2.176 2.337 5.643 9.170

Low vegetation index 1.788 2.195 2.523 2.043 3.671 4.422

Moderate vegetation index 5.404 6.262 7.252 5.392 6.182 6.738

High vegetation index 20.539 18.873 17.729 20.150 14.701 10.244
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Using a remote sensing-based NDVI ap-
proach, this study identifies spatial and tempo-
ral patterns of changes in vegetation dynamics 
that are closely related to climate variability 
in the form of rainfall variability and air tem-
perature influenced by ENSO. The findings em-
phasise the importance of understanding how 
ENSO contributes to local climate variability. 
Such insights can contribute to mitigation and 
adaptation efforts against the negative impacts 
of ENSO-related extreme weather events, 
thereby strengthening community resilience as 
well as the local economy.

Although during the El Nino phase there was 
a large negative impact on vegetation, it should 
be noted that some areas were still able to sur-
vive with healthy vegetation. Diverse vegetation 
types will respond differently to climate vari-
ability (Li et al., 2024). Areas with vegetation 
that is more resistant to dry conditions may show 
better resilience to stresses caused by El NinoIn 
this study, three types of vegetation, namely tree 
vegetation, shrub and grass vegetation, and ag-
ricultural land, were also analysed to observe 
their respective responses to climate variability 
influenced by ENSO. The results of the previ-
ous spatial and temporal analyses of NDVI were 
combined with land cover information from Esri 
Land Cover through a clipping process to extract 
the NDVI values of each vegetation type.

Tree vegetation

Table 6 shows the quantitative changes in tree 
vegetation area. The change in area in hectares 
(ha) based on 5 NDVI classifications shows the 
difference and change in area in each classifica-
tion during the La Nina phase in 2022 and the 
El Nino phase in 2023. To clarify the pattern of 
changes in tree vegetation during the study pe-
riod, the results of the analysis are visualised in 
the form of a graph in Figure 12 to facilitate the 
interpretation of the trend of changes that occur.

Tree vegetation showed stability with a rela-
tively large area of high vegetation index in each 
month during the La Nina phase in 2022. In con-
trast, during the El Nino phase in 2023, the area 
of high vegetation index decreased, while the area 
of low vegetation index increased, especially in 
September, indicating vegetation stress due to 
dry conditions. Lack of water supply can cause 
disturbances in the process of water absorption 
through the roots, which has a direct impact on 
reducing photosynthetic efficiency (Nugroho & 
Setiawan, 2022). This is consistent with the re-
sults of the NDVI analysis, because in addition to 
the density level, NDVI is also highly dependent 
on the photosynthesis process of plants. However, 
the results of this study show that the decline in 
productivity in tree vegetation is not too signifi-
cant, indicating that tree vegetation has good re-
silience to dry climate variability during the El 

Table 6. Rate of change of tree vegetation area based on NDVI classification

NDVI classification
La Nina 2022 (ha) El Nino 2023 (ha)

July August September July August September

Water body 0 0 0 0 0 0

No vegetation 0 0 0 0 0 0

Low vegetation index 306 340 336 304 912 2249

Moderate vegetation index 2526 2906 3342 2002 3846 5669

High vegetation index 15911 15486 15071 16433 13715 9900

Figure 12. Distribution of tree vegetation area based on NDVI
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Nino phase in 2023, but can still be degraded un-
der more extreme drought conditions. 

Shrub and grass vegetation

Table 7 shows quantitative changes in the area 
of shrub and grass vegetation. The change in area 
in hectares (ha) based on 5 NDVI classifications 
shows the difference and change in area for each 
classification during the La Nina phase in 2022 
and the El Nino phase in 2023. To clarify the pat-
tern of changes in shrub and grass vegetation dur-
ing the study period, the results of the analysis 
are visualised in graphical form in Figure 13 to 
facilitate interpretation of the changing trends. 

Shrub and grass vegetation showed a faster re-
sponse to changes in climate variability. During the 
La Nina phase in 2022, areas with a high vegeta-
tion index dominated, but during the El Nino phase 
in 2023, there was a drastic decrease especially in 
September, with areas of high vegetation shrinking 

significantly and unvegetated areas increasing and 
dominating. Shrubs and grasses typically interact 
competitively (Letts et al., 2010). Physiologically, 
shrubs have higher resistance to drought compared 
to the more sensitive grasses (Winkler et al., 2019). 
This indicates that the shrinkage of high and me-
dium vegetation index areas, and the increase of 
low and unvegetated vegetation index areas, were 
dominated by grass vegetation.

Farmland vegetation

Table 8 shows the quantitative changes in 
agricultural land vegetation area. The change 
in area in hectares (ha) based on 5 NDVI clas-
sifications shows the difference and change in 
area in each classification during the La Nina 
phase in 2022 and the El Nino phase in 2023. 
To clarify the pattern of changes in agricultural 
land vegetation during the study period. The re-
sults of the analysis are visualised in graphical 

Table 7. Rate of change shrub and grass vegetation area based on NDVI classification

NDVI classification
La Nina 2022 (ha) El Nino 2023 (ha)

July August September July August September

Water body 263 239 173 109 27 15

No vegetation 434 523 558 596 1613 2676

Low vegetation index 444 558 699 572 1221 1119

Moderate vegetation index 1047 1377 1721 1385 1182 516

High vegetation index 2272 1763 1310 1798 417 135

Figure 13 . Distribution of shrub and grass vegetation area based on NDVI

Table 8. Rate of change farmland vegetation area based on NDVI classification

NDVI classification
La Nina 2022 (ha) El Nino 2023 (ha)

July August September July August September

Water body 105 67 30 7 4 1

No vegetation 670 986 930 880 2437 3642

Low vegetation Index 755 973 1133 852 1114 662

Moderate vegetation Index 1381 1505 1649 1540 781 316

High vegetation Index 1834 1213 1002 1466 408 124
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form in Figure 14 to facilitate interpretation of 
the changing trends. 

Farmland vegetation dominated by rice and 
groundnuts also showed similar dynamics as the 
shrub and grass vegetation. During the La Nina 
phase in 2022, areas with medium to high veg-
etation indices were relatively stable, but during 
the El Nino phase in 2023, there was an increase 
in unvegetated areas and areas with low vegeta-
tion indices, especially in September. This can 
be attributed to the direct impact of drought, as 
agricultural land is highly vulnerable to extreme 
climate variability (Serkendiz et al., 2023). This 
condition inhibits plant growth, potentially reduc-
ing agricultural productivity in Gowa Regency. 
On the other hand, the presence of ENSO will 
make it difficult for farmers to predict the plant-
ing season because it can increase the uncertainty 
of seasonal transitions. In accordance with re-
search conducted by Rahma & Ludwig, (2024), 
which conditions that farmers rely heavily on pre-
dictions of the dry and wet seasons, but ENSO 
has contributed to the uncertainty of the transition 
between the dry and wet seasons.

Relationship of climate parameters (rainfall 
and air temperature) to vegetation dynamics 
based on NDVI

Multicollinearity test

Multicollinearity test was conducted using 
the variance inflation factor (VIF) method to as-
sess the relationship between rainfall and air tem-
perature variables. The results of the analysis can 
be seen in Table 9.

The analysis results show that the VIF val-
ue for rainfall is 1.97, and for air temperature 
is also 1.97. These values are below the critical 
threshold (VIF < 5), which indicates that there 
is no significant multicollinearity problem be-
tween the two variables. Thus, both rainfall and 
air temperature can be used simultaneously in 
the regression model without causing bias in the 
parameter estimates. This result indicates that 
changes in one variable are not fully explained 
by the other, so they can be interpreted indepen-
dently in further analyses.

Multiple linear regression analysis

The data used in this analysis consists of rain-
fall, air temperature, and vegetation area obtained 
from the results of NDVI analysis in July, August, 
and September during the La Nina phase in 2022 
and the El Nino phase in 2023. The data presenta-
tion can be seen in Table 10.

In 2022, the average rainfall in July, August, 
and September was 59 mm, 63 mm, and 59 mm, 
respectively, with average air temperatures of 
26.9 °C, 26.9 °C, and 27.2 °C. Meanwhile, in 
2023, rainfall experienced significant changes, 
with values of 94 mm, 0 mm, and 0 mm respective-
ly, while air temperature was recorded at 26.8 °C, 
27.1 °C, and 28.3 °C. The vegetation area also 
fluctuates, ranging from 21,403 ha to 27,732 ha. 
The results of multiple linear regression analysis 
can be seen in Table 11. 

The results of multiple linear regression anal-
ysis that shows the relationship between rainfall 
and air temperature on vegetation based on NDVI 
in the La Nina phase in 2022 and El Nino in 2023 

Table 9. Multicollinearity test results 
Climate parameters Variance inflation factor (VIF) Test result

Rainfall 1.97
No multicollinearity

Air temperature 1.97

Figure 14. Distribution of farmland vegetation area based on NDVI
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in Manuju and Parangloe Districts of Gowa Re-
gency can be seen in the following equation:

 Ŷ = 97698.37 + 30.63 Rainfall - 
 - 2686.92 Air temperature (9)

The constant in the model has a value of 
97,698.37 with a p-value of 0.043, indicating 
that the baseline vegetation value is statistically 
significant. However, interpretation of the con-
stant needs to be done with caution, as in this 
case the zero value for the independent variable 
may not represent real conditions. The rainfall 
variable has a regression coefficient of 30.63 
with a standard error of 15.35. The t-statistic 
value for this variable is 2.00 with a p value of 
0.140. A p value greater than 0.05 indicates that 
rainfall does not have a significant effect on veg-
etation at the 95% confidence level. However, 
the positive coefficient indicates that an increase 
in rainfall has the potential to increase vegeta-
tion area, although it is not statistically signifi-
cant. Furthermore, the air temperature variable 
has a regression coefficient of -2,686.92 with a 
standard error of 1,040.20. The t-statistic value 
for air temperature is -2.58 with a p value of 
0.082. Although the p value is greater than 0.05, 
this result is close to the significance limit, indi-
cating that air temperature may have a consider-
able influence on vegetation, but not at the 95% 
confidence level. The negative coefficient indi-
cates that an increase in air temperature tends to 
decrease the area of vegetation.

Overall, the regression results show that the 
constants in the model are statistically significant, 

while the rainfall and air temperature variables 
have not shown significance at the 95% confidence 
level. However, air temperature has a potentially 
stronger influence than rainfall. The implications 
of these results suggest that air temperature fac-
tors may contribute more to variation in vegeta-
tion than rainfall, although additional modelling 
is required to increase statistical significance.

Based on Table 12, the regression model 
shows that 92% of vegetation variation can be 
explained by rainfall and air temperature (R² = 
0.92), with an Adjusted R² = 0.87 value that re-
mains stable after adjustment. The overall sig-
nificance of the model (F = 17.63 and p-value = 
0.02) indicates that rainfall and air temperature 
simultaneously have a significant influence on 
vegetation dynamics in the study area. In other 
words, the variability of the two climatic param-
eters jointly determines the dynamics of vegeta-
tion growth and distribution. However, as the 
independent variables were not individually sig-
nificant at the 95% confidence level, additional 
analyses should be conducted to improve under-
standing of this relationship.

These findings reinforce the understanding 
that climate variability, based on precipitation and 

Table 10. Rainfall, temperature, and vegetation data for multiple linear regression analysis
ENSO Years Month Rainfall (mm) Air temperature (°C) Vegetation (ha)

La Nina phase 2022 July 59 26.9 27732

La Nina phase 2022 August 63 26.9 27330

La Nina phase 2022 September 59 27.2 27505

El Nino phase 2023 July 94 26.8 27585

El Nino phase 2023 August 0 27.1 24554

El Nino phase 2023 September 0 28.3 21403

Table 11. Multiple linear regression analysis results.  
Variabel X Coefficients (B) Standar error t-stat p-value

Constant 97698.37 28794.17 3.39 0.043

Rainfall (X1) 30.63 15.35 2.00 0.140

Air Temperature (X2) -2686.92 1040.20 -2.58 0.082

Table 12. Regression model 
Statistical model Value

R2 0.92

Adjusted R2 0.87

F Statistics 17.63

p-value 0.02
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air temperature, plays an important role in deter-
mining the structure and dynamics of vegetation 
ecosystems. Therefore, climate phenomena such 
as ENSO that affect rainfall and air temperature 
patterns can have a significant impact on ecosys-
tem balance and vegetation survival in the long 
term. A holistic approach is needed for future re-
search to comprehensively understand vegetation 
dynamics.

CONCLUSIONS

The results showed significant differences 
in vegetation dynamics between La Nina and El 
Nino phases. During the La Nina phase in 2022, 
NDVI showed stability and dominance of areas 
with high vegetation indices. Climatic variabil-
ity in this phase is characterised by stable rain-
fall and air temperatures that support optimal 
vegetation growth. In contrast, during the El 
Nino phase in 2023, NDVI shows a significant 
decrease in areas with a high vegetation index 
and a significant increase in areas without veg-
etation. Climate variability during this phase is 
characterised by very low rainfall and higher 
air temperatures, which has implications for re-
duced productivity and vegetation degradation. 
In addition, regression analyses showed that air 
temperature tends to have a greater influence 
than rainfall on vegetation dynamics. The re-
gression model has an R² = 0.92 and Adjusted R² 
= 0.87, indicating strong predictive ability. Par-
tially, the two variables showed no significant 
influence at the 95% confidence level. However, 
based on F statistics (F = 17.63; p = 0.02), both 
variables simultaneously had a significant influ-
ence on vegetation. This research can be used as 
a basis for formulating mitigation and adapta-
tion strategies to climate variability in the future.
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