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INTRODUCTION

Bromocresol green, one of the most widely 
used water soluble pH indicators, has shown to 
be particularly hazardous due to its stability in 
aquatic ecosystems (Rosa et al., 2019; Dehghani 
et al., 2016). Because this dye is not readily bio-
degradable, it can accumulate and create a po-
tential hazard for water organisms by inhibiting 
biological processes in them or reducing they 
biodiversity. Humans may notice skin or eye ir-
ritation if large quantities of bromocresol green 
are directly and improperly handled. This made 

it necessary to adequately treat and manage the 
wastewater containing these dyes, because of 
their toxic & hazardous nature towards animals 
including humans (Ahmed et al., 2024, Owino et 
al., 2023). Şenol et al. (2024), adsorption (Per-
ez-Calderon et al., 2023), chemical treatments 
(Bustos-Terrones et al., 2021), advanced oxida-
tion processes (Zhou et al., 2024) as well as co-
agulation and flocculation (Cheng et al., 2018; 
Muniasamy et al., 2023; Ihaddaden et al., 2022 ; 
Beluci et al., 2019).

Phosphates provide multiple advantages, es-
pecially in terms of stability and their applications 
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in various materials (Carvalho et al., 2023; Tang 
et al., 2023; Chauhan et al., 2024). Apart from the 
stability and wide utility in many materials, natural 
phosphate offers an array of advantages due to the 
porous structure and chemical properties of natural 
phosphates, they are utilized as efficient materials 
for removing dyes from wastewater (Hidayat et al., 
2024; Liu et al., 2021; Zhang et al., 2022). 

A property of phosphate-based materials is 
that the in-situ substitution of iron can render 
them magnetic, catalytic or modified structures 
depending on the composition and reaction con-
ditions. (Padayachee et al., 2017). In addition, the 
phosphate-FeCl3 composite might be suitable for 
use as a photocatalyst that is able to take advan-
tage of solar energy in photochemical reactions 
for production of clean fuels and chemicals or en-
vironmental applications (Largo et al., 2024). In 
this study, the phosphate/Fe3O4 was used in the 
coagulation/flocculation process.

MATERIALS AND METHODS

Materials

The ferric chloride hexahydrate (FeCl3·6H2O) 
employed in this study was used of as-received 
without any further treatment; this product was 
purchased from Sigma-Aldrich. Bromocresol 
green (CAS NO.:76-60-8) was obtained from 
OXFORD Lab and its chemical structure is pre-
sented in Figure 1. The natural phosphate used 
in this study was supplied from Khouribga, Mo-
rocco and was processed mainly by initial crush-
ing. These steps involved grinding, washing and 
drying at 900 °C. Drying was performed in a Fur-
nace brand oven, whereas sieving with a Biobase 
brand sieve within a particle size range of 100–
400 µm. The pH of the solution was adjusted by 

introducing diluted sodium hydroxide (CAS No: 
1310-73-2; Sigma-Aldrich) or weak nitric acid 
(CAS No: 7697-37-2; VWR Chemicals), in order 
to achieve the needed pH using a Hanna Instru-
ments pH meter. The distilled water employed in 
the present study was of first quality.

Preparation of NP/Fe3O4

The NP/ Fe3O4 was prepared from natural 
phosphate mixed with FeCl3,6H2O; 5 g of treated 
natural phosphate was blended with 10 mL of 
FeCl3,6H2O (100 g/L), the mixture was stirred 
continuously during 24 h. Then, it was followed 
by centrifugation using BIOBASE centrifuge 
and it was washed using distilled water to neu-
tral pH. Afterward, the mixture was dried for 48 
hours at 60 °C and it was calcined at 600 °C over 
2 hours. The calcined product was finely ground 
in a mortar and sieved to obtain granular particles 
as shown in Figure 2. 

Figure 1. Structure of green bromocresol

Figure 2. Preparation of NP/ Fe3O4 from natural phosphate
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Apparatus and physicochemical techniques

X-ray powder diffraction (XRD) patterns 
were recorded on a PAN analytical XPert ProX 
instrument (Malvern Panalytical Ltd., Royston, 
UK). The instrument was performed under a Ni-
filter condition with CuKa radiation (λ = 1.54060 
Å) using an accelerating voltage V of 40 kV, and 
generated a current I of 30 mA. Data collection 
was carried out in scan range 5–70° (2θ).

The surface chemical groups of the NP/Fe3O4 
were analyzed by FTIR (nicolet 380 fourier trans-
form infrared spectrometer) in the attenuated total 
reflectance (ATR) mode. The spectra were then 
collected in the range of 4000 to 600 cm-1 with a 
4 cm-1 resolution.

Experimental procedure

Figure 3 shows the coagulation/flocculation 
process studied using a six-beaker jar test at differ-
ent pH levels with a VELP Scientifica JLT6 Floc-
culation Tester. In each beaker 250 ml of dye solu-
tion was present. The process started with 2 min 
high-speed mixing on 100 rpm, followed by 15 
minutes gentle mixing on 40 rpm and finished after 
another 10 min sedimentation. After settling phase, 
it was filtered using a 0.45 μm filter. The concen-
tration of the dyes in the solutions was evaluated 
using a Jasco 660 UV-vis spectrophotometer  at a 
wavelength of 615 nm. The dye removal percent-
age was calculated with the following Equation:
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where: Ci and Ct represent the initial dye concen-
tration and at time, respectively.

Experimental design and data analysis

The response surface methodology (RSM) 
was used to study the impact of influent factors, 
because it is considered as a robust statistical 
technique that maximizes global efficiency on 
the experimental plane (Sarah et al., 2023). The 
Box-Behnken design is a one of the numerous de-
signs for RSM and often considered since it also 
requires fewer experiments to obtain predictable 
outcomes (Mokhtar et al., 2024; Alrefaee et al., 
2024; El Gaayda et al., 2024). The Box-Behnken 
design was employed in this study using three 
levels: low (-) and high (+). The values for the 
factors are summarized in Table 1.

Regression model equation
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where: Y is the response variable, β0 is the inter-
cept, βi are the linear coefficients, βii are the 
quadratic coefficients, and βij represent the 
interaction coefficients.

The independent variables are denoted by Xi 
and Xj , and ϵ is the error term (El Gaayda et al., 
2024).

ANOVA F-ratio

The F-ratio in ANOVA is a statistical value 
used to assess whether the means of differ-
ent groups are significantly different from each 
other. It is computed by comparing the variance 
between the groups to the variance within each 
group, helping to evaluate the effect of the in-
dependent variable. A larger F-ratio suggests a 
higher probability that the differences observed 
between groups are not due to random variability Figure 3. Coagulation/flocculation process test

Table 1. Values of three factors
Description Factor Unit -1 +1

pH solution X1 UpH 4 10

Initial GBC concentration X2 mg/L 10 100

NP/Fe3O4 dosage X3 g/L 0.1 0.55
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(O’Driscoll et al., 2024; Rodrigues et al., 2024; 
Chen et al., 2021).
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This is used to test the significance of factors 
in the model.

RESULTS AND DISCUSSION

DRX analysis

Figure 4 shows the X-ray diffraction (XRD) pat-
tern of both the NP and the synthesized NP/Fe₃O₄ 
samples. The analysis revealed distinct peaks at 2θ 
angles of 25,09°, 31,8°, 32,2°, and 32,9°, which are 
characteristic of NP. These diffraction peaks corre-
spond to the specific crystallographic planes (002), 
(211), (112), and (300) of the NP phase. The char-
acteristic Fe₃O₄ peaks are typically found closer 
to 30° and 35,29° for the (220) and (311) planes 

confirming the successful incorporation of iron ox-
ide into NP (Patwa et al., 2024; Fu et al., 2020).

FTIR analysis

Figure 5 shows the FTIR of NP and NP/
Fe3O4. NP was characterized using FTIR, to 
identify all functional groups present in Fe3O4 
(Joudi et al., 2019). The band observed at 864 
cm-1 was assigned to Si-O bending vibrations 
due to the silicate groups present in NP (Naciri 
et al., 2016). The band detected at 1100 cm-1 was 
assigned to P-O stretching vibrations (Gungor 
Koc, 2019). The carbonate ions were detected 
within the 1360–1400 cm−1 region, and attrib-
uted to CO₃²⁻ bending vibrations (Dakkach et al., 
2012). The band at 2400 cm-1 confirmed the exis-
tence of CO (Lalliansanga et al., 2022). The bands 
showed at 2800 cm-1 represented C-H stretching 
vibration, indicating the presence of hydrocarbon 

Figure 4. XRD of NP and NP/Fe3O4

Figure 5. FTIR of NP and NP/Fe3O4
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(Wacharine et al., 2024; Zhu et al., 2014; Nasef et 
al., 2019). Similarly, all those characteristic bands 
found in the NP sample were also detected from 
the FITR spectra of NP/ Fe3O4 composite indicat-
ing a proper preparation of NP/Fe3O4. The band at 
1100 cm-1 was associated to the O-H stretching vi-
brations, therefore showing that OH groups were 
present in the product. A novel band at 640 cm-1 
was detected, which exhibited Fe-O stretching vi-
brations in magnetite (Wacharine et al., 2024).

The pH point zero charge (PZC)

Point of zero charge (PZC) represents pH 
when the surface charge is neutral; i.e. there are 
equal positive as well as negative charges present 
on a material surface. This is an important point, 
as it decides how the material interacts with ions 
in a solution (Obeid et al., 2013).

A 0.1 mol·L⁻¹ NaCl solution (Fulka) with 
a pH range between 2 and 12, adjusted by add-
ing an aqueous solution of NaOH or HCl, was 
first prepared. Then, 0.1 g of dried NP/Fe₃O₄ 
was brought into contact with 20 mL of each 
solution in sealed flasks. The suspensions were 
stirred for three days at room temperature us-
ing a Reciprocating Shaker RSLAB-7 at a con-
stant speed. After agitation, each solution was 
filtered through a 0.45 µm cellulose filter paper, 
and the pH was measured again. Figure 6 il-
lustrates the pH PZC tests of NP/Fe₃O₄. In Fig-
ure 7, the change in ΔpH corresponding to the 
variation in initial pH is reported. ΔpH=0 rep-
resents the pH point of zero charge (pHpzc) and 
this is evident from Figure 7 at around initial 

pH of near about 7. Thus, at pH 7, the material 
is uncharged on average.

In the pH range of less than 7, ΔpH is nega-
tive, which indicates that the material releases H+ 
ions into solution and confers a positive surface 
charge under acidic conditions. In contrast, when 
the pH further increased to above 7 the value of 
ΔpH changed into positive meaning that the ma-
terial absorbs protons (H+) and therefore carrying 
a surface negative charge as in basic medium.

Development of regression model equation 
and validation of the model

The Box-Behnken design was employed to 
investigate the impact of three factors: pH, green 
bromocresol (GBC) concentration, and coagulant 

Figure 6. Determination of the pH point zero charge

Figure 7. Effect of initial solution pH on ΔpH as a function of pH before and after adjustment 
for the Fe₃O₄/natural phosphate composite



205

Ecological Engineering & Environmental Technology 2025, 26(4), 200–211

dosage, on the coagulation/flocculation process. 
The percentage of dye removal was considered as 
the response variable in the study. Table 2 provides 
a detailed overview of the experimental results for 
these factors. This design was chosen for its effi-
ciency in exploring interactions between variables 
while minimizing the number of experimental runs 
based in a second-order polynomial model with in-
teraction terms created by JMP Pro 13.

The estimated coefficients in the model, and 
the t Ration, and Probability values for all linear, 
quadratic, and interaction effects of the param-
eters, are summarized in Table 3. The t ratio an 
probability were used to evaluate a regression 
model. A higher t ration combined to lower prob-
ability to suggest that the factor is significant.  
Figure 8 illustrates the Pareto chart analysis and 

the bar length shown in this chart corresponds to 
the impact of each factor. It was observed that the 
most significant factor in this study was the pH. 
Table 4 presents the analysis of variance (ANO-
VA) results for a model. This table shows that the 
model explains a significant portion of the vari-
ability, with a sum of squares of 24,134.32 and 
a mean square of 2,681.59, compared to the er-
ror with a sum of squares of 85.42. The F-ratio 
of 156.97 is very high, and the corresponding P-
value (<0.0001) indicates that the probability of 
observing such a result by chance (Prob > F) is 
extremely low. This confirms that the model is 
statistically significant, denoted by the (*) under 
the significance column [19].

In Figure 9, the plot demonstrates a strong lin-
ear relationship between the predicted and actual 

Table 2. Box-Behnken design for GBC dye removal

N° Configuration pH GBC concentration 
(mg/L)

NP/Fe3O4
Dose
(g/L)

Removal of GBC
%

1 000 7 55 0.55 100

2 -0+ 4 55 1 98

3 0+- 7 100 0.1 99

4 0++ 7 100 1 97

5 ++0 10 100 0.55 2

6 -+0 4 100 0.55 100

7 000 7 55 0.55 98

8 0-- 7 10 0.1 99

9 000 7 55 0.55 97

10 0-+ 7 10 1 97

11 +0- 10 55 0.1 4

12 -0- 4 55 0.1 96

13 --0 4 10 0.55 96

14 +0+ 10 55 1 3

15 +-0 10 10 0.55 5

Table 3. Estimated regression coefficient for % removal of GBC
Term Estimate Std error t Ratio Prob>|t|

Intercept 98.3333 2.3863 41.2100 <.0001

pH (4.10) -43.1250 1.4613 -29.5100 <.0001

GBC concentration (mg/L) (10.100) -5.5000 1.4613 -3.7600 0.0131

NP/Fe3O4 dose (g/L) (0.1.1) 6.1250 1.4613 4.1900 0.0086

pH*GBC concentration (mg/L) 1.2500 2.0666 0.6000 0.5717

pH*NP/Fe3O4 dose (g/L) -5.5000 2.0666 -2.6600 0.0448

GBC concentration (mg/L)*NP/Fe3O4 dose (g/L) 8.2500 2.0666 3.9900 0.0104

pH*pH -47.4167 2.1510 -22.0400 <.0001

GBC concentration (mg/L)*GBC concentration (mg/L) -3.1667 2.1510 -1.4700 0.2009

NP/Fe3O4 dose (g/L)*NP/Fe3O4 dose (g/L) -5.4167 2.1510 -2.5200 0.0533
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percentages of GBC removal. The high R-squared 
value of 1.00 indicates excellent agreement be-
tween the two, while the low RMSE (4.1332) and 
significant P-value (<0.0001) highlight the accu-
racy and reliability of the model. The equation of 
the removal of GBC as a function of the selected 
factors is expressed as follows:

 GBC removal (%) = 98.33 − 43.12(pH) − 
 – 5.5(GBC concentration) + 6.13(NP/Fe3 O4  dose) + 
 + 6.12 (pH × GBC concentration) −  
 – 5.5(pH × NP/Fe3 O4  dose) + 
 + 8.25(GBC concentration × NP/Fe3 O4  dose) (4)

The negative coefficients for pH and GBC 
concentration suggest that higher values of 
these factors reduce removal efficiency, while an 

increase in NP/Fe₃O₄ dose positively influences 
GBC removal. The interaction terms show that 
combinations of pH with GBC concentration or 
NP/Fe₃O₄ dose have a significant impact, and 
quadratic terms indicate diminishing returns at 
extreme values of the factors.  Rsq=1 indicates 
that the calculated values were closely aligned 
with the experimental values, which suggests that 
this model was highly reliable for determination 
of %removal of GBC.

Figure 10 shows the influence of the pH, ini-
tial GBC dye concentration, and coagulant dose 
on both % removal of GBC dye and desirability. 
The optimal conditions of coagulation of GBM 
are achieved at pH 7, 61.23 mg/L of GBC concen-
tration and 0.55 g/L of NP/Fe3O4 coagulant dose.

The desirability curve suggests that the maxi-
mum efficiency for GBC removal occurs when 
all three parameters are balanced at their optimal 
points, with a desirability score approaching 0.87, 
indicating a highly effective removal process un-
der these conditions.
 • Effect of pH: Figure 10 shows that as the pH 

increases from 4 to 10, the percentage of GBC 
removal initially increases, reaching a maxi-
mum around pH 7, and then decreases, which 
indicates that the optimal pH was less than or 
equal to 7.

 • Effect of GBC concentration: Figure 10 in-
dicates that increasing of GBC concentration 
results in a decrease in the % removal of GBC. 

 • Effect of NP/Fe3O4 dose: Figure 10 suggests 
that increasing the dose of NP/Fe3O4 up to 0.55 
g/L positively impacts the % removal of GBC.

Figure 8. Pareto chart analysis for removal of GBC

Table 4. Analysis of variance (ANOVA) for the removal of GBC 

Source Degree of 
freedom

Sum of
squares Mean square F ratio P-Value Signifiance

Model 9 24 134.32 2 681.59 156.97 <0.0001 *

Error 5 85.42 17.08 – – –

Total 14 24 219.73 – – – –

Note: * Significant at a level of 5% (F0.050 (1, 15) = 4.54). 

Figure 9. The graph depicting the relationship 
between the predicted and actual values for GBC 

removal
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Figure 11 shows the 3D surface response 
for coagulation of GBC. This graphic was used 
to study the relationship between three key fac-
tors and % removal of GBC dye. The relationship 
between pH, initial GBC dye is shown in Figure 
11a, it can be observed that the removal of GBC 
dye increases by decreasing initial dye concentra-
tion and keeping pH between 4 to 7. Figure 11b 
indicates that % removal of GBC increases with 
keeping the pH between 4 to 7. In turn, Figure 
11c shows that % removal of GBC increases with 
decreasing initial dye concentration 

Mechanism of coagulation of GBC using  
NP/Fe3O4

The coagulation of bromocresol green (GBC) 
dye using NP/Fe₃O₄ nanoparticles is based on 
electrostatic interactions. In the pH range of 4 to 
7, GBC molecules, which carry a negative charge 
due to their functional groups, are attracted to the 
positively charged surface of the NP/Fe₃O₄ par-
ticles. This interaction promotes the aggregation 

of dye molecules, facilitating their removal from 
the solution. The mechanism is validated by de-
termining the point of zero charge (pHₚzc) of 
NP/Fe₃O₄, which confirms that the nanoparticles 
possess a positive surface charge under acidic to 
slightly neutral conditions. Furthermore, response 
surface analysis supports the influence of these 
charge interactions, demonstrating enhanced dye 
removal efficiency within the optimal pH range. 
This process demonstrates the capability of NP/
Fe₃O₄ nanoparticles to act as an effective coagu-
lant for anionic dyes, with their surface charge 
properties playing a key role in driving the co-
agulation mechanism.

Comparison of maximum removal of GBC 
with literature values

Table 5 shows the comparison in the lit-
erature regarding the determination of GBC. 
GBC removal has been studied using con-
ventional coagulants and advanced materi-
als. While traditional methods like aluminum 

Figure 10. Main effects of parameters on the responses (desirability and % removal of GBC)

Table 5. Comparison of maximum removal efficiency of GBC with literature values
Materials Illustration Dose (g/L) Removal of GBC (%) References

NP/Fe3O4 0.55 97.51% This study

Acid functionalized corn cob – 0.76 96% (Onu et al., 2022)
Modified agricultural waste – 20 93% (Chijioke Elijah et al., 2020)
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Figure 11. Response surface model of GBC removal (%) by three factors. Interaction between (a) initial 
concentration of GBC and pH, (b) pH and NP/Fe3 O4  dose, (c) initial concentration of GBC and NP/Fe3 O4  dose

salts produce excess sludge and have limited 
efficiency, Fe₃O₄ nanoparticles show superior 
performance through electrostatic interactions 
at pH levels below their pHₚzc. These nanopar-
ticles offer faster removal, higher selectivity, 
and easier recovery, making them a promising 
alternative for GBC wastewater treatment.

CONCLUSIONS

An efficient material has been developed 
from phosphate doped with FeCl3 to enhance 
the coagulation of bromocresol green. The re-
sults from XRD and FITR show that NP/Fe3O4 

was successfully prepared. In turn, the results 
from the response surface model demonstrate 
that NP/Fe3O4 effectively removes bromocre-
sol green within a pH range of 4 to 7, showing a 
reduction in dye concentration as the dosage of 
the prepared material increases. The proposed 
mechanism confirms that the coagulation pro-
cess was achieved by electrostatic interaction 
between negative charge of GBC and positive 
charge of the prepared coagulant. Moreover, 
the elimination of GBC using NP/Fe₃O₄ was 
highly effective, requiring only 0.55 g/L of the 
material, which compares favorably with other 
studies that generally require higher dosages 
for similar dye removal processes.
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